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Abstract

A recent trend in generative modeling is building 3D-aware generators from 2D
image collections. To induce the 3D bias, such models typically rely on volumetric
rendering, which is expensive to employ at high resolutions. Over the past months,
more than ten works have addressed this scaling issue by training a separate 2D
decoder to upsample a low-resolution image (or a feature tensor) produced from
a pure 3D generator. But this solution comes at a cost: not only does it break
multi-view consistency (i.e., shape and texture change when the camera moves),
but it also learns geometry in low fidelity. In this work, we show that obtaining a
high-resolution 3D generator with SotA image quality is possible by following a
completely different route of simply training the model patch-wise. We revisit and
improve this optimization scheme in two ways. First, we design a location- and
scale-aware discriminator to work on patches of different proportions and spatial
positions. Second, we modify the patch sampling strategy based on an annealed
beta distribution to stabilize training and accelerate the convergence. The resulting
model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we
test it on four datasets (two introduced in this work) at 2562 and 5122 resolutions.
It obtains state-of-the-art image quality, high-fidelity geometry and trains ≈2.5×
faster than the upsampler-based counterparts.

Code/data/visualizations: https://universome.github.io/epigraf

1 Introduction

Figure 1: We build a pure NeRF-based generator trained in a patch-wise fashion. Left two grids:
samples on FFHQ 5122 [25] and Cats 2562 [79]. Middle grids: interpolations between samples
on M-Plants and M-Food (upper) and corresponding geometry interpolations (lower). Right grid:
background separation examples. In contrast to the upsampler-based methods, one can naturally
incorporate the techniques from the traditional NeRF literature into our generator: for background
separation, we simply copy-pasted the corresponding code from NeRF++ [78].
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Generative models for image synthesis achieved remarkable success in recent years and now enjoy a
lot of practical applications [56, 24]. While initially they mainly focused on 2D images [21, 68, 25,
4, 28], recent research explored generative frameworks with partial 3D control over the underlying
object in terms of texture/structure decomposition, novel view synthesis or lighting manipulation
(e.g., [59, 57, 7, 70, 6, 12, 50]). These techniques are typically built on top of the recently emerged
neural radiance fields (NeRF) [39] to explicitly represent the object (or its latent features) in 3D
space.

NeRF is a powerful framework, which made it possible to build expressive 3D-aware generators
from challenging RGB datasets [7, 12, 6]. Under the hood, it trains a multi-layer perceptron (MLP)
F(x;d) = (c, σ) to represent a scene by encoding a density σ ∈ R+ for each coordinate position
x ∈ R3 and a color value c ∈ R3 from x and view direction d ∈ S2 [39]. To synthesize an image,
one renders each pixel independently by casting a ray r(q) = o + qd (for q ∈ R+) from origin
o ∈ R3 into the direction d ∈ S2 and aggregating many color values along it with their corresponding
densities. Such a representation is very expressive but comes at a cost: rendering a single pixel is
computationally expensive and makes it intractable to produce a lot of pixels in one forward pass. It
is not fatal for reconstruction tasks where the loss can be robustly computed on a subset of pixels,
but it creates significant scaling problems for generative NeRFs: they are typically formulated in a
GAN-based framework [14] with 2D convolutional discriminators requiring an entire image as input.

People address these scaling issues of NeRF-based GANs in different ways. The dominating approach
is to train a separate 2D decoder to produce a high-resolution image from a low-resolution image or
feature grid rendered from a NeRF backbone [44]. During the past six months, there appeared more
than a dozen of methods that follow this paradigm (e.g., [6, 15, 73, 48, 81, 36, 77, 23, 74, 80, 66]).
While using the upsampler allows scaling the model to high resolution, it comes with two severe
limitations: 1) it breaks the multi-view consistency of a generated object, i.e., its texture and shape
change when the camera moves; and 2) the geometry gets only represented in a low resolution (≈643).
In our work, we show that by dropping the upsampler and using a simple patch-wise optimization
scheme, one can build a 3D generator with better image quality, faster training speed, and without the
above limitations.

Patch-wise training of NeRF-based GANs was initially proposed by GRAF [57] and got largely
neglected by the community since then. The idea is simple: instead of training the generative model on
full-size images, one does this on small random crops. Since the model is coordinate-based [60, 67],
it does not face any issues to synthesize only a subset of pixels. This serves as an excellent way to
save computation for both the generator and the discriminator since it makes them both operate on
patches of small spatial resolution. To make the generator learn both the texture and the structure,
crops are sampled to be of variable scales (but having the same number of pixels). In some sense, this
can be seen as optimizing the model on low-resolution images + high-resolution patches.

In our work, we improve patch-wise training in two crucial ways. First, we redesign the discriminator
by making it better suited to operating on image patches of variable scales and locations. Convolu-
tional filters of a neural network learn to capture different patterns in their inputs depending on their
semantic receptive fields [31, 47]. That’s why it is detrimental to reuse the same discriminator to
judge both high-resolution local and low-resolution global patches, inducing additional burden on it to
mix filters’ responses of different scales. To mitigate this, we propose to modulate the discriminator’s
filters with a hypernetwork [16], which predicts which filters to suppress or reinforce from a given
patch scale and location.

Second, we change the random scale sampling strategy from an annealed uniform to an annealed beta
distribution. Typically, patch scales are sampled from a uniform distribution s ∼ U [s(t), 1] [57, 37, 5],
where the minimum scale s(t) is gradually decreased (i.e. annealed) till some iteration T from
s(0) = 0.9 to a smaller value s(T ) (in the interval [0.125 − 0.5]) during training. This sampling
strategy prevents learning high-frequency details early on in training and puts too little attention on the
structure after s(t) reaches its final value s(T ). This makes the overall convergence of the generator
slower and less stable that’s why we propose to sample patch scales using the beta distribution
Beta(1, β(t)) instead, where β(t) is gradually annealed from β(0) ≈ 0 to some maximum value
β(T ). In this way, the model starts learning high-frequency details immediately with the start of
training and focuses more on the structure after the growth finishes. This simple change stabilizes the
training and allows it to converge faster than the typically used uniform distribution [57, 5, 37].
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Figure 2: Comparing the geometry between EG3D [6] and our generator on FFHQ 5122. For each
method, we computed the density field in the 5123 volume resolution and extracted the surfaces
using marching cubes. The geometry of our generator contains more high-frequency details (e.g.,
hair strands are better separated) since it learns it in full resolution. EG3D uses the 642 rendering
resolution (and 1282 during the last 10% of the training) so its shapes appear over-smoothed.

We use those two ideas to develop a novel state-of-the-art 3D GAN: Efficient patch-informed
Generative Radiance Fields (EpiGRAF). We employ it for high-resolution 3D-aware image synthesis
on four datasets: FFHQ [25], Cats [79], Megascans Plants, and Megascans Food. The last two
benchmarks are introduced in our work and contain 360◦ renderings of photo-realistic scans of
different plants and food objects (described in §4). They are much more complex in terms of
geometry and are well-suited for assessing the structural limitations of modern 3D-aware generators.

Our model uses a pure NeRF-based backbone, that’s why it represents geometry in high resolution
and does not suffer from multi-view synthesis artifacts, as opposed to upsampler-based generators.
Moreover, it has higher or comparable image quality (as measured by FID [20]) and 2.5× lower
training cost. Also, in contrast to upsampler-based 3D GANs, our generator can naturally incorporate
the techniques from the traditional NeRF literature. To demonstrate this, we incorporate background
separation into our framework by simply copy-pasting the corresponding code from NeRF++ [78].

2 Related work

Neural Radiance Fields. Neural Radiance Fields (NeRF) is an emerging area [39], which combines
neural networks with volumetric rendering techniques to perform novel-view synthesis [39, 78, 2],
image-to-scene generation [76, 61], surface reconstruction [46, 71, 45] and other tasks [9, 17, 51,
29]. In our work, we employ them in the context of 3D-aware generation from a dataset of RGB
images [57, 7].

3D generative models. A popular way to learn a 3D generative model is to train it on 3D data or in
an autoencoder’s latent space (e.g., [10, 72, 1, 35, 32, 40, 30]). This requires explicit 3D supervision
and there appeared methods which train from RGB datasets with segmentation masks, keypoints
or multiple object views [13, 33, 55]. Recently, there appeared works which train from single-view
RGB only, including mesh-generation methods [19, 75, 54] and methods that extract 3D structure
from pretrained 2D GANs [59, 49]. And recent neural rendering advancements allowed to train
NeRF-based generators [57, 7, 43] from purely RGB data from scratch, which became the dominating
direction since then and which are typically formulated in the GAN-based framework [14].

NeRF-based GANs. HoloGAN [42] generates a 3D feature voxel grid which is projected on a
plane and then upsampled. GRAF [57] trains a noise-conditioned NeRF in an adversarial manner.
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Figure 3: Our generator (left) is purely NeRF-based and uses the tri-plane backbone [6] with the
StyleGAN2 [26] decoder (but without the 2D upsampler). Our discriminator (right) is also based
on StyleGAN2, but is modulated by the patch location and scale parameters. We use the patch-wise
optimization for training [57] with our proposed Beta scale sampling, which allows our model to
converge ×2-3 faster than the upsampler-based architectures despite the generator modeling geometry
in full resolution (see Tab 1).

π-GAN [7] builds upon it and uses progressive growing and hypernetwork-based [16] conditioning
in the generator. GRAM [12] builds on top of π-GAN and samples ray points on a set of learnable
iso-surfaces. GNeRF [37] adapts GRAF for learning a scene representation from RGB images
without known camera parameters. GIRAFFE [44] uses a composite scene representation for better
controllability. CAMPARI [43] learns a camera distribution and a background separation network
with inverse sphere parametrization [78]. To mitigate the scaling issue of volumetric rendering, many
recent works train a 2D decoder under different multi-view consistency regularizations to upsample a
low-resolution volumetrically rendered feature grid [6, 15, 73, 48, 81, 74, 80]. However, none of such
regularizations can currently provide the multi-view consistency of pure-NeRF-based generators.

Patch-wise generative models. Patch-wise training had been routinely utilized to learn the textural
component of image distribution when the global structure is provided from segmentation masks,
sketches, latents or other sources (e.g., [22, 58, 11, 69, 53, 52, 34, 63]). Recently, there appeared
works which sample patches at variable scales, in which way a patch can carry global information
about the whole image. Recent works use it to train a generative NeRF [57], fit a neural representation
in an adversarial manner [37] or to train a 2D GAN on a dataset of variable resolution [5].

3 Model

We build upon StyleGAN2 [26], replacing its generator with the tri-plane-based NeRF model [6]
and using its discriminator as the backbone. We train the model on r × r patches (we use r = 64
everywhere) of random scales instead of the full images of resolution R×R. Scales s ∈ [ rR , 1] are
randomly sampled from a time-varying distribution s ∼ pt(s).

3.1 3D generator

Compared to upsampler-based 3D GANs [15, 44, 74, 81, 6, 80], we use a pure NeRF [39] as our
generator G and utilize the tri-plane representation [6, 8] as the backbone. It consists of three
components: 1) mapping network M : z 7→ w which transforms a noise vector z ∼ R512 into
the latent vector w ∼ R512; 2) synthesis network S : w 7→ P which takes the latent vector w
and synthesizes three 32-dimensional feature planes P = (Pxy,Pyz,Pxz) of resolution Rp × Rp

(i.e. P(∗) ∈ RRp×Rp×32); 3) tri-plane decoder network F : (x,P ) 7→ (c, σ) ∈ R4, which takes
the space coordinate x ∈ R3 and tri-planes P as input and produces the RGB color c ∈ R3 and
density value σ ∈ R+ at that point by interpolating the tri-plane features in the given coordinate and
processing them with a tiny MLP. In contrast to classical NeRF [39], we do not utilize view direction
conditioning since it worsens multi-view consistency [7] in GANs, which are trained on RGB datasets
with a single view per instance. To render a single pixel, we follow the classical volumetric rendering
pipeline with hierarchical sampling [39, 7], using 48 ray steps in coarse and 48 in fine sampling
stages. See the accompanying source code for more details.
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Figure 4: Comparing uniform (left) and beta (middle) annealed patch scale sampling in terms of their
probability density function (PDF) (for visualization purposes, we clamp the maximum density value
to 5); (right) PDF of Beta(1, β), provided for completeness. Uniform distribution with annealed
smin(0) = 0.9 from 0.9 to smin(T ) = 0.125 does not put any attention to high-frequency details in
the beginning and treats small-scale and large-scale patches equally at the end of the annealing. Beta
distribution with annealed β(0) ≈ 0 to β(T ) ≈ 1, in contrast, lets the model learn high-resolution
texture immediately after the training starts, and puts more focus on the structure at the end.

3.2 2D scale/location-aware discriminator

Our discriminator D is built on top of StyleGAN2 [26]. Since we train the model in a patch-wise
fashion, the original backbone is not well suited for this: convolutional filters are forced to adapt
to signals of very different scales and extracted from different locations. A natural way to resolve
this problem is to use separate discriminators depending on the scale, but that strategy has three
limitations: 1) each particular discriminator receives less overall training signal (since the batch
size is limited); 2) from an engineering perspective, it is more expensive to evaluate a convolutional
kernel with different parameters on different inputs; 3) one can use only a small fixed amount of
possible patch scales. This is why we develop a novel hypernetwork-modulated [16, 64] discriminator
architecture to operate on patches with continuously varying scales.

To modulate the convolutional kernels of D, we define a hypernetwork H : (s, δx, δy) :7→ (σ1, ...,σL)
as a 2-layer MLP with tanh non-linearity at the end which takes patch scale s and its cropping offsets
δx, δy as input and produces modulations σℓ ∈ (0, 2)c

ℓ
out (we shift the tanh output by 1 to map into

the 1-centered interval), where cℓout is the number of output channels in the ℓ-th convolutional layer.
Given a convolutional kernel W ℓ ∈ Rcℓout×cℓin×k×k and input x ∈ Rcin , a straightforward strategy
to apply the modulation is to multiply σ on the weights (depicting the convolution operation by
conv2d(.) and omitting its other parameters for simplicity):

y = conv2d(W ℓ ⊙ σ,x), (1)

where we broadcast the remaining axes and y ∈ Rcout is the layer output (before the non-linearity).
However, using different kernel weights on top of different inputs is inefficient in modern deep
learning frameworks (even with the group-wise convolution trick [26]). That’s why we use an
equivalent strategy of multiplying the weights on x instead:

y = σ ⊙ conv2d(W ℓ,x). (2)

This suppresses and reinforces different convolutional filters of the layer depending on the patch scale
and location. And to incorporate even stronger conditioning, we also use the projection strategy [41]
in the final discriminator block. We depict our discriminator architecture in Fig 3. As we show in
Tab 2, it allows us to obtain ≈15% lower FID compared to the standard discriminator.

3.3 Patch-wise optimization with Beta-distributed scales

Training NeRF-based GANs is computationally expensive because rendering each pixel via vol-
umetric rendering requires many evaluations (e.g., in our case, 96) of the underlying MLP. For
scene reconstruction tasks, it does not create issues since the typically used L2 loss [39, 78, 71]
can be robustly computed on a sparse subset of the pixels. But for NeRF-based GANs, it becomes
prohibitively expensive for high resolutions since convolutional discriminators operate on dense
full-size images. The currently dominating approach to mitigate this is to train a separate 2D decoder
to upsample a low-resolution image representation rendered from a NeRF-based MLP. But this breaks
multi-view consistency (i.e., object’s shape and texture change when the camera is moving) and

5



learns the 3D geometry in a low resolution (from ≈162 [74] to ≈1282 [6]). This is why we build
upon the multi-scale patch-wise training scheme [57] and demonstrate that it can give state-of-the-art
image quality and training speed without the above limitations.

Patch-wise optimization works the following way. On each iteration, instead of passing the full-size
R × R image to D, we instead input only a small patch with resolution r × r of random scale
s ∈ [r/R, 1] and extracted with a random offset (δx, δy) ∈ [0, 1− s]2. We illustrate this procedure in
Fig 3. Patch parameters are sampled from distribution:

s, δx, δy ∼ pt(s, δx, δy) ≜ pt(s)p(δx|s)p(δy|s) (3)
where t is the current training iteration. In this way, patch scales depend on the current training
iteration t, and offsets are sampled independently after we know s. As we show next, the choice of
distribution pt(s) has a crucial influence on the learning speed and stability.

Typically, patch scales are sampled from the annealed uniform distribution [57, 37, 5] s:
pt(s) = U [smin(t), 1], smin(t) = lerp [1, r/R,min(t/T, 1)] , (4)

where lerp is the linear interpolation function1, and the left interval bound smin(t) is gradually
annealed during the first T iterations until it reaches the minimum possible value of r/R.2 But this
strategy does not let the model learn high-frequency details early on in training and puts little focus on
the structure when smin(t) is fully annealed to r/R (which is usually very small, e.g., r/R = 0.125
for a typical 642 patch-wise training on 5122 resolution). As we show, the first issue makes the
generator converge slower, and the second one makes the overall optimization less stable.

To mitigate this, we propose a small change in the pipeline by simply replacing the uniform scale
sampling distribution with:

s ∼ Beta(1, β(t)) · (1− r/R) + r/R, (5)
where β(t) is gradually annealed from β(0) to some final value β(T ). Using beta distribution instead
of the uniform one gives a very convenient knob to shift the training focus between large patch scales
s → 1 (carrying the global information about the whole image) and small patch scales r → r/R
(representing high-resolution local crops).

A natural way to do the annealing is to anneal from 0 to 1: at the start, the model focuses entirely
on the structure, while at the end, it transforms into the uniform distribution (See Fig 4). We follow
this strategy, but from the design perspective, set β(T ) to a value that is slightly smaller than 1 (we
use β(T ) = 0.8 everywhere) to keep more focus on the structure at the end of the annealing as well.
In our initial experiments, β(T ) ∈ [0.7, 1] performs similarly. The scales distributions comparison
between beta and uniform sampling is provided in Fig 4 and the convergence comparison in Fig 7.

3.4 Training details

We inherit the training procedure from StyleGAN2-ADA [24] with minimal changes. The optimiza-
tion is performed by Adam [27] with a learning rate of 0.002 and betas of 0 and 0.99 for both G
and D. We use β(T ) = 0.8 for T = 10000, z ∼ N (0, I) and set Rp = 512. D is trained with
R1 regularization [38] with γ = 0.05. We train with the overall batch size of 64 for ≈15M images
seen by D for 2562 resolution and ≈20M for 5122. Similar to previous works [6, 12], we use pose
supervision for D for the FFHQ and Cats dataset to avoid geometry ambiguity. For this, we take the
rotation and elevation angles, encode them with positional embeddings [60, 67] and feed them into a
2-layer MLP. After that, we multiply the obtained vector with the last hidden representation in the
discriminator, following the Projection GAN [41] strategy from StyleGAN2-ADA [24]. We train G
in full precision and use mixed precision for D. Since FFHQ has too noticeable 3D biases, we use
generator pose conditioning for it [6]. Further details can be found in the source code.

4 Experiments

4.1 Experimental setup

Benchmarks. In our study, we consider four benchmarks: 1) FFHQ [25] in 2562 and 5122 resolutions,
consisting of 70,000 (mostly front-view) human face images; 2) Cats 2562 [79], consisting of 9,998

1lerp(x, y, α) = (1− α) · x+ α · y for x, y ∈ R and α ∈ [0, 1].
2In practice, those methods use a very slightly different distribution (see Appx B)
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Figure 5: Comparing samples of EpiGRAF and modern 3D-aware generators. Our method attains
state-of-the-art image quality, recovers high-fidelity geometry and preserves multi-view consistency
for both simple-shape (FFHQ and Cats) and variable-shape (M-Plants and M-Food) datasets. We
refer the reader to the supplementary for the video comparisons to evaluate multi-view consistency.

(mostly front-view) cat face images; 3) Megascans Food (M-Food) 2562 consisting of 231 models
of different food items with 128 views per model (25472 images in total); and 4) Megascans Plants
(M-Plants) 2562 consisting of 1166 different plant models with 128 views per model (141824 images
in total). The last two datasets are introduced in our work to fix two issues with the modern 3D
generation benchmarks. First, existing benchmarks have low variability of global object geometry,
focusing entirely on a single class of objects, like human/cat faces or cars, that do not vary much from
instance to instance. Second, they all have limited camera pose distribution: for example, FFHQ [25]
and Cats [79] are completely dominated by the frontal and near-frontal views (see Appx E). That’s
why we obtain and render 1307 Megascans models from Quixel, which are photo-realistic (barely
distinguishable from real) scans of real-life objects with complex geometry. Those benchmarks and
the rendering code will be made publicly available.

Metrics. We use FID [20] to measure image quality and estimate the training cost for each method in
terms of NVidia V100 GPU days needed to complete the training process.

Baselines. For upsampler-based baselines, we compare to the following generators: StyleNeRF [15],
StyleSDF [48], EG3D [6], VolumeGAN [73], MVCGAN [80] and GIRAFFE-HD [74]. Apart from
that, we also compare to pi-GAN [7] and GRAM [12], which are non-upsampler-based GANs. To
compare on Megascans, we train StyleNeRF, MVCGAN, pi-GAN, and GRAM from scratch using
their official code repositories (obtained online or requested from the authors), using their FFHQ or
CARLA hyperparameters, except for the camera distribution and rendering settings. We also train
StyleNeRF, MVCGAN, and π-GAN on Cats 2562. GRAM [12] restricts the sampling space to a set
of learnable iso-surfaces, which makes it not well-suited for datasets with varying geometry.
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Table 1: FID scores of modern 3D GANs. “†” — evaluated on a re-aligned version of FFHQ (different
from original FFHQ [25]). Training cost is measured in terms of NVidia V100 GPU days. “OOM”
denotes out-of-memory error.

Method FFHQ Cats M-Plants M-Food Training cost Geometry constraints
2562 5122 2562 2562 2562 2562 5122

StyleNeRF [15] 8.00 7.8 5.91 19.32 16.75 40 56 322-res + 2D upsampler
StyleSDF [48] 11.5 11.19 – – – 42 56 642-res + 2D upsampler
EG3D [6] 4.8† 4.7† – – – N/A 76 1282-res + 2D upsampler
VolumeGAN [73] 9.1 – – – – N/A N/A 642-res + 2D upsampler
MVCGAN [80] 13.7 13.4 39.16 31.70 29.29 42 64 642-res + 2D upsampler
GIRAFFE-HD [74] 11.93 – 12.36 – – N/A N/A 162-res + 2D upsampler

pi-GAN [7] 53.2 OOM 68.28 75.64 51.99 56 ∞ none
GRAM [12] 13.78 OOM 13.40 188.6 178.9 56 ∞ iso-surfaces
EpiGRAF (ours) 9.71 9.92 6.93 19.42 18.15 16 24 none

pi-GAN MVC-GAN Ours

Figure 6: Visualizing the learned geometry for different methods. π-GAN [7] recovers high-fidelity
shapes, but has worse image quality (see Table 1) and is much more expensive to train than our
model. MVC-GAN [80] fails to capture good geometry because of the 2D upsampler. Our method
learns proper geometry and achieves state-of-the-art image quality. We extracted the surfaces using
marching cubes from the density fields sampled on 2563 grid and visualized them in PyVista [65].
We manually optimized the marching cubes contouring threshold for each checkpoint of each method.
We noticed that π-GAN [7] produces a lot of “spurious” density which makes.

4.2 Results

EpiGRAF achieves state-of-the-art image quality. For Cats 2562, M-Plants 2562 and M-Food 2562,
EpiGRAF outperforms all the baselines in terms of FID except for StyleNeRF, performing very
similar to it on all the datasets even though it does not have a 2D upsampler. For FFHQ, our model
attains very similar FID scores as the other methods, ranking 4/9 (including older π-GAN [7]),
noticeably losing only to EG3D [6], which trains and evaluates on a different version of FFHQ and
uses pose conditioning in the generator (which potentially improves FID at the cost of multi-view
consistency). We provide a visual comparison for different methods in Fig 5.

EpiGRAF is much faster to train. As reported in Tab 1, existing methods typically train for ≈1 week
on 8 V100s, EpiGRAF finishes training in just 2 days for 2562 and 3 days for 5122 resolutions, which
is 2− 3× faster. Note that this high training efficiency is achieved without using an upsampler, which
initially enabled the high-resolution synthesis of 3D-aware GANs. As to the non-upsampler methods,
we couldn’t train GRAM or π-GAN on 5122 resolution due to the memory limitations of the setup
with 8 NVidia V100 32GB GPUs (i.e., 256GB of GPU memory in total).
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EpiGRAF learns high-fidelity geometry. Using a pure NeRF-based backbone has two crucial benefits:
it provides multi-view consistency and allows learning the geometry in the full dataset resolution. In
Fig 6, we visualize the learned shapes on M-Food and M-Plants for 1) π-GAN: a pure NeRF-based
generator without the geometry constraints; 2) MVC-GAN [80]: an upsampler-based generator with
strong multi-view consistency regularization; 3) our model. We provide the details and analysis in
the caption of Fig 6. We also provide the geometry comparison with EG3D on FFHQ 5122 in Fig 2.

EpiGRAF easily capitalizes on techniques from the NeRF literature. Since our generator is purely
NeRF based and renders images without a 2D upsampler, it is well coupled with the existing
techniques from the NeRF scene reconstruction field. To demonstrate this, we adopted background
separation from NeRF++ [78] using the inverse sphere parametrization by simply copy-pasting the
corresponding code from their repo. We depict the results in Fig 1 and provide the details in Appx B.

4.3 Ablations

We report the ablations for different discriminator architectures and patch sizes on FFHQ 5122

and M-Plants 2562 in Tab 2. Using a traditional discriminator architecture results in ≈15% worse
performance. Using several ones (via the group-wise convolution trick [26]) results in a noticeably
slower training time and dramatically degrades the image quality. We hypothesize that the reason for
it was the reduced overall training signal each discriminator receives, which we tried to alleviate by
increasing their learning rate, but that did not improve the results. A too-small patch size hampers the
learning process and produces a ≈80% worse FID. A too-large one provides decent image quality
but greatly reduces the training speed. Using a single scale/position-aware discriminator achieves the
best performance, outperforming the standard one by ≈15% on average.

To assess the convergence of our proposed patch sampling scheme, we compared against uniform
sampling on Cats 2562 for T ∈ {1000, 5000, 10000}, representing different annealing speeds. We
show the results for it in Fig 7: our proposed beta scale sampling strategy with T = 10k schedule
robustly converges to lower values than the uniform one with T = 5k or T = 10k and does not
fluctuate much compared to the T = 1k uniform one (where the model reached its final annealing
stage in just 1k kilo-images seen by D).

To analyze how hyper-modulation manipulates the convolutional filters of the discriminator, we
visualize the modulation weights σ, predicted by H, in Fig 8 (see the caption for the details). These
visualizations show that some of the filters are always switched on, regardless of the patch scale;
while others are always switched off, providing potential room for pruning [18]. And ≈40% of the
filters are getting switched on and off depending on the patch scale, which shows that H indeed learns
to perform meaningful modulation.

0 1000 2000 3000 4000 5000
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Figure 7: Convergence com-
parison on Cats 2562 for dif-
ferent sampling strategies.

Experiment FFHQ 5122 M-Plants 2562 Training cost

GRAF (with tri-planes) 13.41 24.99 24
+ beta scale sampling (T = 5k) 11.57 21.77 24
+ 2 scale-specific D-s 10.87 21.02 28
+ 4 scale-specific D-s 21.56 43.11 28
+ 1 scale/position-aware D 9.92 19.42 24

– 322 patch resolution 17.44 34.32 19
– 642 patch resolution (default) 9.92 19.42 24
– 1282 patch resolution 11.36 18.90 34

Table 2: Ablating the discriminator architecture and patch sizes in
terms of FID scores and training cost (V100 GPU days).
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Figure 8: Visualizing modulation weights σ, predicted by H for 2-nd, 6-th, 10-th and 14-th convolu-
tional layers. Each subplot denotes a separate layer and we visualize random 32 filters for it.
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5 Limitations

Performance drop for 2D generation. Before switching to training 3D-aware generators, we spent
a considerable amount of time, exploring our ideas on top of StyleGAN2 [24] for traditional 2D
generation since it is faster, less error-prone and more robust to a hyperparameters choice. What we
observed is that despite our best efforts (see C) and even with longer training, we couldn’t obtain the
same image quality as the full-resolution StyleGAN2 generator.

Table 3: Trying to train a traditional StyleGAN2 [26] generator in the patch-wise fashion. We tried to
train longer to compensate for a smaller learning signal overall (a 642 patch is 1/64 of information
compared to a 5122 image), but this didn’t allow to catch up. Note, however, that AnyResGAN [5]
reaches SotA when training on 2562 patches compared to 10242 images.

Method FFHQ 5122 LSUN Bedroom 2562

FID Training cost FID Training cost

StyleGAN2-ADA [24] 3.83 8 4.12 5
+ multi-scale 642 patch-wise training 7.11 6 6.73 4
+ ×2 longer training 5.71 12 5.42 8
+ ×4 longer training 4.76 24 4.31 16

A range of possible patch sizes is restricted. Tab 2 shows the performance drop when using the
322 patch size instead of the default 642 one without any dramatic improvement in speed. Trying to
decrease it further would produce even worse performance (imagine training in the extreme case of
22 patches). Increasing the patch size is also not desirable since it decreases the training speed a lot:
going from 642 to 1282 resulted in 30% cost increase without clear performance benefits. In this way,
we are very constrained in what patch size one can use.

Discriminator does not see the global context. When the discriminator classifies patches of small
scale, it is forced to do so without relying on the global image information, which could be useful
for this. Our attempts to incorporate it (see Appx C) did not improve the performance (though we
believe we under-explored this).

Low-resolution artifacts. While our generator achieves good FID on FFHQ 5122, we noticed that
it has some blurriness when one zooms-in into the samples. It is not well captured by FID since
it always resizes images to the 299 × 299 resolution. We attribute this problem to our patch-wise
training scheme, which puts too much focus on the structure and believe that it could be resolved.

6 Conclusion

In this work, we showed that it is possible to build a state-of-the-art 3D GAN framework without a
2D upsampler, but using a pure NeRF-based generator trained in a multi-scale patch-wise fashion.
For this, we improved the traditional patch-wise training scheme in two important ways. First,
we proposed to use a scale/location-aware discriminator with convolutional filters modulated by a
hypernetwork depending on the patch parameters. Second, we developed a schedule for patch scale
sampling based on the beta distribution, that leads to faster and more robust convergence. We believe
that the future of 3D GANs is a combination of efficient volumetric representations, regularized 2D
upsamplers, and patch-wise training. We propose this avenue of research for future work.

Our method also has several limitations. Before switching to training 3D-aware generators, we spent
a considerable amount of time exploring our ideas on top of StyleGAN2 for traditional 2D generation,
which always resulted in higher FID scores. Further, the discriminator loses information about global
context. We tried multiple ideas to incorporate global context, but it did not lead to an improvement.
Next, our current patch-wise training scheme might cause some low-res artifacts. Finally, 3D GANs
generating faces and humans may have negative societal impact as discussed in Appx H.
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A Additional limitations due to aliasing

Current patch-wise training strategies (both ours and in prior works [57, 37]) do not take aliasing into
account when extracting patches. This leads to additional problems, which we illustrate in Figure 9.
Basically, sampling patches from images (when performed naively) is prone to aliasing, which can
potentially result in learning an incorrect distribution.

(a) Training dataset

s = 0.25

s = 1

(b) Patches seen during training (c) Learnt distribution

Figure 9: Illustrating fundamental limitations of a non-anti-aliased patch-wise training scheme on a
toy example. Consider a simple dataset consisting of just two images, illustrated on Figure 9a, which
are mostly white except for the colored corners. Consider a generator trained with the patch-wise
scheme without taking anti-aliasing into account, where we sample patches of just two scales: s = 1
and s = 0.25. Then, during training it would only see patches as depicted in Figure 9b, where
color correlation in the corners would not be noticeable since large-scale patches will lose such
find-grained details during aliased down-sampling (as in both our and previous patch-wise training
schemes [57, 37]). As a result, the generator will learn to generate images without taking correlations
between high-frequency details into account, as illustrated in Figure 9c.

We can put this more rigorously. ‘ Imagine that we have a distribution p(x) for x ∈ RR×R, where
we consider images to be single-channel (for simplicity) and R is the image size. If we train with
patch size of r, then each optimization step uses random r × r pixels out of R×R, i.e. we optimize
over the distribution of all possible marginals p(xp) where xp = e(x; ξ) ∈ Rr×r is an image patch
and e(x, ξ) is an aliased patch extraction function with nearest neighbor interpolation and random
seed ξ.3 This means that our minimax objective becomes:

min
G

max
D

Ep(xp)[logD(xp)] + Ep(z),p(ξ)[log(1− D(e(G(z), ξ)))] (6)

If we rely on the GAN convergence theorem [14], stating that we recover the training distribution
as the solution of the minimax problem, then G will learn to approximate all the possible marginal
distributions p(xp) instead of the full joint distribution p(x), that we seek.

Sampling patches in an alias-free manner is tricky for our generator, since we cannot obtain interme-
diate high-resolution representations (which are needed to address aliasing) from tri-planes due to
the computational overhead. We leave the development of patch sampling schemes for NeRF-based
generators for future work.

B Training details

B.1 Hyper-parameters and optimization details

We inherit most of the hyperparameters from the StyleGAN2-ADA repo [24] repo which we build
on top4. In this way, we use the dimensionalities of 512 for both z and w. The mapping network
has 2 layers of dimensionality 512 with LeakyReLU non-linearities with the negative slope of −0.2.
Synthesis network S produced three 5122 planes of 32 channels each. We use the SoftPlus non-
linearity instead of typically used ReLU [39] as a way to clamp the volumetric density. Similar to
π-GAN, we also randomize

For FFHQ and Cats, we also use camera conditioning in D. For this, we encode yaw and pitch angles
(roll is always set to 0) with Fourier positional encoding [60, 67], apply dropout with 0.5 probability
(otherwise, D can start judging generations from 3D biases in the dataset, hurting the image quality),
pass through a 2-layer MLP with LeakyReLU activations to obtain a 512-dimensional vector, which
is finally as a projection conditioning [41]. Cameras positions were extracted in the same way as in
GRAM [12].

3For brevity, we “hide” all the randomness of the patch sampling process into ξ.
4https://github.com/NVlabs/stylegan2-ada-pytorch
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We optimize both G and D with the batch size of 64 until D sees 25,000,000 real images, which is
the default setting from StyleGAN2-ADA. We the default setup of adaptive augmentations, except
for random horizontal flipping, since it would require the corresponding change in the yaw angle
at augmentation time, which was not convenient to incorporate from the engineering perspective.
Instead, random horizontal flipping is used non-adaptively as a dataset mirroring where flipping the
yaw angles is more accessible. We train G in full precision, while D uses mixed precision.

Hypernetwork H is structured very similar to the generator’s mapping network. It consists of 2 layers
with LeakyReLU non-linearities with the negative slope of −0.2. Its input is the positional embedding
of the patch scales and offsets s, δx, δy , encoded with Fourier features [60, 67] and concatenated into
a single vector of dimensionality 828. It produces a patch representation vector p ∈ R512, which is
then adapted for each convolutional layer via:

σ = tanh(Wℓp+ bℓ) + 1, (7)

where σ ∈ [0, 2]c
ℓ
out is the modulation vector, (Wℓ, bℓ) is the layer-specific affine transformation, cℓout

is the amount of output filters in the ℓ-th layer. In this way, H has layer-specific adapters.

For the background separation experiment, we adapt the neural representation MLP from INR-
GAN [62], but passing 4 coordinates (for the inverse sphere parametrization [78]) instead of 2 as an
input. It consists of 2 blocks with 2 linear layers each. We use 16 steps per ray for the background
without hierarchical sampling.

Further details could be found in the accompanying source code.

B.2 Utilized computational resources

While developing our model, we had been launching experiments on 4× NVidia A100 81GB or
Nvidia V100 32GB GPUs with the AMD EPYC 7713P 64-Core processor. We found that in practice,
running the model on A100s gives a 2× speed-up compared to V100s due to the possibility of
increasing the batch size from 32 to 64. In this way, training EpiGRAF on 4× A100s gives the same
training speed as training it 8× V100s.

For the baselines, we were running them on 4-8× V100s GPUs as was specified by the original
papers unless the model could fit into 4 V100s without decreasing the batch size (it was only possible
for StyleNeRF [15]).

For rendering Megascans, we used 4× NVIDIA TITAN RTX with 24GB memory each. But resource
utilization for rendering is negligible compared to training the generators.

In total, the project consumed ≈4 A100s GPU-years, ≈4 V100s GPU-years, and ≈20 TITAN RTX
GPU-days. Note, that out of this time, training the baselines consumed ≈1.5 V100s GPU-years.

B.3 Annealing schedule details

As being said in §3.3, the existing multi-scale patch-wise generators [57, 37] use uniform distribution
U [smin(t), 1] to sample patch scales, where smin(t) is gradually annealed during training from 0.9
(or 0.8 [37]) to r/R with different speeds. We visualize the annealing schedule for both GRAF
and GNeRF on Fig 10, which demonstrates that their schedules are very close to lerp-based one,
described in §3.3.

C Failed experiments

Modern GANs are a lot of engineering and it often takes a lot of futile experiments to get to a point
where the obtained performance is acceptable. We want to enumerate some experiments which did
not work out (despite looking like they should work) — either because the idea was fundamentally
flawed on its own or because we’ve under-explored it (or both).

Conditioning D on global context worsened the performance. In Appx 5, we argued that when D
processes a small-scale patch, it does not have access to the global image information, which might
be a source of decreased image quality. We tried several strategies to compensate for this. Our first
attempt was to generate a low-resolution image, bilinearly upsample it to the target size, and then
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Figure 10: Comparing annealing schedules for GRAF [57], GNeRF [37] and the lerp-based schedule
from §3.3. We simplified the exposition by stating that GRAF and GNeRF use the lerp-based
schedule, which is very close to reality.

“grid paste” a high-resolution patch into it. The second attempt was to simply always concatenate
a low-resolution version of an image as 3 additional channels. However, in both cases, generator
learned to produce low-resolution version of images well, but the texture was poor. We hypothesize
that it was due to D starting to produce its prediction almost entirely based on the low-resolution
image, ignoring the high-resolution patches since they are harder to discriminate.

Patch importance sampling did not work. Almost all the datasets used for 3D-aware image
synthesis have regions of difficult content and regions with simpler content — it is especially
noticeable for CARLA [57] and our Megascans datasets, which contain a lot of white background.
That’s why, patch-wise sampling could be improved if we sample patches from the more difficult
regions more frequently. We tried this strategy in the GNeRF [37] problem setup on the NeRF-
Synthetic dataset [39] of fitting a scene without known camera parameters. We sampled patches from
regions with high average gradient norm more frequently. For some scenes, it helped, for other ones,
it worsened the performance.

View direction conditioning breaks multi-view consistency. Similar to the prior works [57, 7],
our attempt to condition the radiance (but not density) MLP on ray direction (similar to NeRF [39])
led to poor multi-view consistency with radiance changing with camera moving. We tested this
on FFHQ [25], which has only a single view per object instance and suspect that it wouldn’t be
happening on Megascans, where view coverage is very rich.

Tri-planes produced from convolutional layers are much harder to optimize for reconstruction.
While debugging our tri-plane representation, we found that tri-planes produced with convolutional
layers are extremely difficult to optimize for reconstruction. I.e., if one fits a 3D scene while
optimizing tri-planes directly, then everything goes smoothly, but when those tri-planes are being
produced by the synthesis network of StyleGAN2 [26], then PNSR scores (and the loss values) are
plateauing very soon.

D Additional patch size ablation

Table 2 shows that the generator achieves the best performance for the 642 patch resolution. The
comparison between patch sizes was performed while keeping all other hyperparameters fixed. This
creates an issue since StyleGAN-based generators should use different values for the R1 regularization
weight γ depending on the training resolutions.5 This is why in Table 4, we provide the results for a
3× 3 grid search over patch sizes and R1 regularization gamma.

And this better aligns with intuition: increasing the patch size should improve the performance (at the
loss of the training speed) since the model uses more information during training. The main reason
why we fixed the patch resolution to 642 is because we considered the computational overhead not
to be worth the quality improvements it brings: while it is not expensive to run several individual

5See https://github.com/NVlabs/stylegan2-ada-pytorch/blob/main/train.py#L173.
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Table 4: FID@2k scores for the grid search over the patch size and R1 regularization weight γ on
Cats 2562. Each model was trained for 5M seen images and FID was measured using 2048 fake and
all the real images.

Patch size γ = 0.01 γ = 0.1 γ = 1 Training speed

322 20.31 30.72 335.32 9.84 seconds / 1K images
642 24.93 18.13 20.07 11.36 seconds / 1K images
1282 21.21 18.72 16.96 17.45 seconds / 1K images

experiments with the 1282 patch resolution, it is expensive to develop the whole project around the
1282 patch resolution generator.

E Datasets details

E.1 Megascans dataset

Modern 3D-aware image synthesis benchmarks have two issues: 1) they contain objects of very
similar global geometry (like, human or cat faces, cars and chairs), and 2) they have poor camera
coverage. Moreover, some of them (e.g., FFHQ), contain 3D-biases, when an object features (e.g.,
smiling probability, gaze direction, posture or haircut) correlate with the camera position [6]. As
a result, this does not allow to evaluate a model’s ability to represent the underlying geometry and
makes it harder to understand whether performance comes from methodological changes or better
data preprocessing.

To mitigate these issues, we introduce two new datasets: Megascans Plants (M-Plants) and Megascans
Food (M-Food). To build them, we obtain ≈1, 500 models from Quixel Megascans6 from Plants,
Mushrooms and Food categories. Megascans are very high-quality scans of real objects which are
almost indistinguishable from real. For Mushrooms and Plants, we merge them into the same Food
category since they have too few models on their own.

We render all the models in Blender [3] with cameras, distributed uniformly at random over the
sphere of radius 3.5 and field-of-view of π/4. While rendering, we scale each model into [−1, 1]3

cube and discard those models, which has the dimension produce of less than 2. We render 128 views
per object from a fixed distance to the object center from uniformly sampled points on the entire
sphere (even from below). For M-Plants, we additionally remove those models which have less than
0.03 pixel intensity on average (computed as the mean alpha value over the pixels and views). This is
needed to remove small grass or leaves which will be occupying a too small amount of pixels. As a
result, this procedure produces 1,108 models for the Plants category and 199 models for the Food
category.

We include the rendering script as a part of the released source code. We cannot release the source
models or textures due to the copyright restrictions. We release all the images under the CC BY-NC-
SA 4.0 license7. Apart from the images, we also release the class categories for both M-Plants and
M-Food.

The released datasets do not contain any personally identifiable information or offensive content since
it does not have any human subjects, animals or other creatures with scientifically proven cognitive
abilities. One concern that might arise is the inclusion of Amanita muscaria8 into the Megascans
Food dataset, which is poisonous (when consumed by ingestion without any specific preparation).
This is why we urge the reader not to treat the included objects as edible items, even though they are
a part of the “food” category. We provide random samples from both of them in Fig 11 and Fig 12.
Note that they are almost indistinguishable from real objects.

6https://quixel.com/megascans
7https://creativecommons.org/licenses/by-nc-sa/4.0
8https://en.wikipedia.org/wiki/Amanita_muscaria
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Figure 11: Real images from the Megascans Plants dataset. This dataset contains very complex
geometry and texture, while having good camera coverage.

Figure 12: Real images from the Megascans Food dataset. Caution: some objects in this dataset
could be poisonous.
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Table 5: Comparing 3D datasets. Megascans Plants and Megascans Food are much more complex
in terms of geometry and has much better camera coverage than FFHQ [25] or Cats [79]. The
abbreviation “USphere(µ, ζ)” denotes uniform distribution on a sphere (see π-GAN [7]) with mean µ
and pitch interval of [µ− ζ, µ+ ζ]. For Cats, the final resolution depends on the cropping and we
report the original dataset resolution.

Dataset Number of images Yaw distribution Pitch distribution Resolution

FFHQ [25] 70,000 Normal(0, 0.3) Normal(π/2, 0.2) 10242

Cats 10,000 Normal(0, 0.2) Normal(π/2, 0.2) ≈604× 520
CARLA 10,000 USphere(0, π) USphere(π/4, π/4) 5122

M-Plants 141,824 USphere(0, π) USphere(π/2, π/2) 10242

M-Food 25,472 USphere(0, π) USphere(π/2, π/2) 10242
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Figure 13: Comparing yaw/pitch angles distribution for different datasets.

E.2 Datasets statistics

We provide the datasets statistics in Tab 5. For CARLA [57], we provide them for comparison and do
not use this dataset as a benchmark since it is small, has simple geometry and texture.

F Additional samples

We provide random non-cherry-picked samples from our model in Fig 14, but we recommend visiting
the website for video illustrations: https://universome.github.io/epigraf.

To demonstrate GRAM’s [12] mode collapse, we provide more its samples in Fig 15.

G Potential negative societal impacts

Our developed method is in the general family of media synthesis algorithms, that could be used for
automatized creation and manipulation of different types of media content, like images, videos or 3D
scenes. Of particular concern is creation of deepfakes9 — photo-realistic replacing of one person’s
identity with another one in images and videos. While our model does not yet rich good enough
quality to have perceptually indistinguishable generations from real media, such concerns should be
kept in mind when developing this technology further.

9https://en.wikipedia.org/wiki/Deepfake
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(a) FFHQ 5122 [25]. (b) Cats 2562 [79] (c) Megascans Plants 2562 (d) Megascans Food 2562

Figure 14: Random samples (without any cherry-picking) for our model. Zoom-in is recommended.

Figure 15: Random samples from GRAM [12] on M-Plants 2562 (left) and M-Food 2562 (right).
Since it uses the same set of iso-surfaces for each sample to represent the geometry, it struggles to fit
the datasets with variable structure, suffering from a very severe mode collapse.
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H Ethical concerns

We have reviewed the ethics guidelines10 and confirm that our work complies with them. As discussed
in Appx E.1, our released datasets are not human-derived and hence do not contain any personally
identifiable information and are not biased against any groups of people.

10https://nips.cc/public/EthicsGuidelines
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